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Sphere packings

Definition

A sphere packing in Rn is a collection of spheres/balls of equal size
which do not overlap (except for touching). The density of a sphere
packing is the volume fraction of space occupied by the balls.
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Sphere packing problem

Problem: Find a/the densest sphere packing(s) in Rn.

In dimension 1, we can achieve density 1 by laying intervals end to
end.

In dimension 2, the best possible is by using the hexagonal lattice.
[Fejes Tóth 1940]
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Sphere packing problem II

In dimension 3, the best possible way is to stack layers of the
solution in 2 dimensions. This is Kepler’s conjecture, now a
theorem of Hales and collaborators.
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There are infinitely (in fact, uncountably) many ways of doing this!
These are the Barlow packings.



Face centered cubic packing

Image: Greg A L (Wikipedia), CC BY-SA 3.0 license



Higher dimensions

In some higher dimensions, we have guesses for the densest sphere
packings.

Most of them arise from lattices.

But (until very recently!) no proofs.

In very high dimensions (say ≥ 1000) densest packings are likely to
be close to disordered.
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Large dimensions, upper bounds

For general n, we only have upper and lower bounds on the density
of packings in Rn.

The best systematic upper bound is due to
Kabatiansky-Levenshtein, and it looks like 2−0.599n.

Cohn-Elkies linear programming bounds were shown to be as good
(by Cohn-Zhao).

Problem

I Improve the exponent of the upper bound (if possible).

I What is the true exponent of the Cohn-Elkies LP bound?

I Can it be systematically improved by using an SDP bound?
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Lower bounds
On the other hand, there is an easy lower bound due to Minkowski
of 2−n: take any saturated packing, where you cannot add any
more spheres. Doubling radius must cover space.

Minkowski-Hlawka showed you could get lattice packings with at
least this density.

The best lower bounds to date are of the form C · n · 2−n for
general n. Venkatesh recently showed you could get
C · n · log log n · 2−n for some very special n.

Problem

Can the lower bound be improved asymptotically?

Conjecture (Zassenhaus)

In every dimension, the maximal density is attained by a periodic
packing.
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Lattices

Definition

A lattice Λ in Rn is a discrete subgroup of rank n, i.e. generated
by n linearly independent vectors of Rn.

Examples

I Integer lattice Zn.

I Checkerboard lattice Dn = {x ∈ Zn :
∑

xi even }
I Simplex lattice An = {x ∈ Zn+1 :

∑
xi = 0}

I Special root lattices E6,E7,E8.

I E8 generated by D8 and all-halves vector.
I E7 orthogonal complement of a root (or A1) in E8.
I E6 orthogonal complement of an A2 in E8.
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Projection of E8 root system

Image: Jgmoxness (Wikipedia), CC BY-SA 3.0 license



Leech lattice

In dimension 24, there is also the remarkable Leech lattice. It is
the unique even unimodular lattice in that dimension without any
roots.

There are many neat constructions of it (for instance,
Conway-Sloane give twenty-three constructions). The usual one
involves the extended Golay code.

My favorite: The lattice II25,1 is generated in R25,1 (which has the
quadratic form x2

1 + · · ·+ x2
25 − x2

26) by vectors in Z26 or
(Z + 1/2)26 with even coordinate sum.

The Weyl vector w = (0, 1, 2, . . . , 24, 70) has norm 0, since
12 + · · ·+ 242 = 702 (!)

The Leech lattice is w⊥/Zw with the induced quadratic form.
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Lattice packing

Associated sphere packing: if m(Λ) is the length of a smallest
non-zero vector of Λ, then we can put balls of radius m(Λ)/2
around each point of Λ so that they don’t overlap.

The packing problem for lattices asks for the densest lattice(s) in
Rn for every n. This is equivalent to the determination of the
Hermite constant γn, which arises in the geometry of numbers.
The known answers are:

n 1 2 3 4 5 6 7 8 24

Λ A1 A2 A3 D4 D5 E6 E7 E8 Leech

due to Lagrange Gauss Korkine- Blichfeldt Cohn-
Zolotareff Kumar
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Lattices vs. non-lattices

The best packings that we seem to be able to construct in high
dimensions are lattices.

Conjecture (folklore)

For high dimensions, the densest packings should be non-lattice.

For instance, the best known packing in dimension 10 is the Best
packing, which has 40 translates of a lattice.

In dimension 9, we have the fluid diamond packings.

But we don’t know a single dimension when this conjecture is
proved.



Lattices vs. non-lattices

The best packings that we seem to be able to construct in high
dimensions are lattices.

Conjecture (folklore)

For high dimensions, the densest packings should be non-lattice.

For instance, the best known packing in dimension 10 is the Best
packing, which has 40 translates of a lattice.

In dimension 9, we have the fluid diamond packings.

But we don’t know a single dimension when this conjecture is
proved.



Lattices vs. non-lattices

The best packings that we seem to be able to construct in high
dimensions are lattices.

Conjecture (folklore)

For high dimensions, the densest packings should be non-lattice.

For instance, the best known packing in dimension 10 is the Best
packing, which has 40 translates of a lattice.

In dimension 9, we have the fluid diamond packings.

But we don’t know a single dimension when this conjecture is
proved.



Lattices vs. non-lattices

The best packings that we seem to be able to construct in high
dimensions are lattices.

Conjecture (folklore)

For high dimensions, the densest packings should be non-lattice.

For instance, the best known packing in dimension 10 is the Best
packing, which has 40 translates of a lattice.

In dimension 9, we have the fluid diamond packings.

But we don’t know a single dimension when this conjecture is
proved.



Lattices vs. non-lattices

The best packings that we seem to be able to construct in high
dimensions are lattices.

Conjecture (folklore)

For high dimensions, the densest packings should be non-lattice.

For instance, the best known packing in dimension 10 is the Best
packing, which has 40 translates of a lattice.

In dimension 9, we have the fluid diamond packings.

But we don’t know a single dimension when this conjecture is
proved.



Lattices, quadratic forms

Lattices and quadratic forms are two ways of viewing the same
object.

I Euclidean lattice up to isometry, with a basis

I Positive definite matrix

I Quadratic form

So lattices up to isometry are the same as quadratic forms up to
invertible integer linear transformation of variables.

O(n)\GL(n,R)/GL(n,Z) ∼= GL(n,Z)\Sym+(n,R)
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Hermite constant

The question of finding the densest lattice is equivalent to finding
the Hermite constant, in any dimension.

For a positive definite quadratic form Q, let min(Q) be the smallest
nonzero value attained by Q when the variables are integers.

Definition

The Hermite constant γn is the maximum of min(Q) as Q ranges
over pos. def. quadratic forms of determinant 1 and dimension n.
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Voronoi’s theorem

Theorem (Voronoi)

A lattice is a local maximum for density iff it is perfect and
eutactic.

Let S(Λ) = {u1, . . . , uN} be the set of minimal vectors of Λ, i.e.
those of smallest positive norm in Λ.

Definition

We say Λ is perfect if the N rank one n× n matrices uiu
T
i span the

space of symmetric matrices (which has dimension n(n + 1)/2).

Definition

We say Λ is eutactic if the identity matrix lies in the positive cone
spanned by these rank one matrices.
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Perfect forms

One can try to enumerate perfect forms in low dimensions, using
an algorithm of Voronoi. Then we can compute which ones are
also eutactic, which gives us the set of local optima.

n 1 2 3 4 5 6 7 8 9

# Perfect forms 1 1 1 2 3 7 33 10916 > 500000

# Local optima 1 1 1 2 3 6 30 2408 ??

The enumeration of 8-dimensional perfect forms was completed by
Schuermann, Sikirić, and Vallentin in 2009.

Problem

Determine the densest lattices in dimensions 9 and 10 and prove
the folklore conjecture that their density is exceeded by non-lattice
packings.
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Extremal even unimodular lattices I

One nice class of lattices is that of the even unimodular ones.
These only exist in dimensions that are multiples of 8.

The theta function
∑

x∈Λ q〈x ,x〉/2 is a modular form
1 + a1q + a2q

2 + . . . .

For the lattice to be a good packing, want as many of a1, . . . , ar to
vanish as possible.

Let n = 24m + 8k with k ∈ {0, 1, 2}. Then dimension of space of
modular forms gives that a1, . . . , a2m+2 cannot all vanish.

Definition

The (even unimodular) lattice is extremal if a1, . . . , a2m+1 are all 0.

Extremal lattices cannot exist for n larger than ≈ 41000 (the value
of a2m+2 becomes negative.
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Extremal even unimodular lattices II

Till recently, extremal even unimodular lattices were known in
dimensions all multiples of 8 through 80, except for dimension 72.

In 2012, Nebe constructed an extremal even unimodular lattice in
dimension 72. Proof involves enumeration of vectors of norm 8,
uses symmetry group.

Existence of these in higher dimensions is still open.

For the total number of even unimodular lattices in a given
dimension, one can use the Siegel mass formula to give a lower
bound which grows very rapidly. In fact, the number of extremal
ones also seems to initially grow quite rapidly.

One in R8, two in R16, one in R24, at least 107 in R32, at least
1051 in R40.



Extremal even unimodular lattices II

Till recently, extremal even unimodular lattices were known in
dimensions all multiples of 8 through 80, except for dimension 72.

In 2012, Nebe constructed an extremal even unimodular lattice in
dimension 72. Proof involves enumeration of vectors of norm 8,
uses symmetry group.

Existence of these in higher dimensions is still open.

For the total number of even unimodular lattices in a given
dimension, one can use the Siegel mass formula to give a lower
bound which grows very rapidly. In fact, the number of extremal
ones also seems to initially grow quite rapidly.

One in R8, two in R16, one in R24, at least 107 in R32, at least
1051 in R40.



Extremal even unimodular lattices II

Till recently, extremal even unimodular lattices were known in
dimensions all multiples of 8 through 80, except for dimension 72.

In 2012, Nebe constructed an extremal even unimodular lattice in
dimension 72. Proof involves enumeration of vectors of norm 8,
uses symmetry group.

Existence of these in higher dimensions is still open.

For the total number of even unimodular lattices in a given
dimension, one can use the Siegel mass formula to give a lower
bound which grows very rapidly. In fact, the number of extremal
ones also seems to initially grow quite rapidly.

One in R8, two in R16, one in R24, at least 107 in R32, at least
1051 in R40.



Extremal even unimodular lattices II

Till recently, extremal even unimodular lattices were known in
dimensions all multiples of 8 through 80, except for dimension 72.

In 2012, Nebe constructed an extremal even unimodular lattice in
dimension 72. Proof involves enumeration of vectors of norm 8,
uses symmetry group.

Existence of these in higher dimensions is still open.

For the total number of even unimodular lattices in a given
dimension, one can use the Siegel mass formula to give a lower
bound which grows very rapidly. In fact, the number of extremal
ones also seems to initially grow quite rapidly.

One in R8, two in R16, one in R24, at least 107 in R32, at least
1051 in R40.



Kissing problem I

The kissing number problem asks for the smallest number of unit
spheres which can touch a central unit sphere, without overlapping.

In R3, this is called the Gregory-Newton problem. Newton believed
the answer was 12, whereas Gregory thought you could fit a
thirteenth sphere.

Newton was correct. Proof by Schütte van der Waerden around
1950.

Leech gave a short proof, which was also used for the first chapter
of “Proofs from the Book”, but it omitted so many details it was
later scrapped.

n 1 2 3 4 5 6 7 8 24

Kissing number 2 6 12 24 ? ? ? 240 196560
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Kissing problem II

The answers in 8 and 24 dimensions are unique and come from the
E8 and Leech lattices.

They were proved by Odlyzko-Sloane and Levenshtein using linear
programming bounds. Uniqueness by Bannai and Sloane.

Kissing number in R4: proved by Musin using LP bounds and
geometric reasoning (2003).

Different proof by Bachoc and Vallentin using semidefinite
programming bounds.
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Open problems for kissing numbers

I Show that the only 24-point kissing configuration in 4
dimensions is that of D4.

I Improve asymptotic lower bounds on kissing numbers. The
best bound currently is the Shannon-Wyner bound which
grows like 20.2075n in the dimension.

I Improve asymptotic upper bounds on kissing numbers. The
best bound at the moment is Kabatiansky-Levenshtein’s
bound which grows like 20.401n.

Note that there was a recent breakthrough by Vladut, showing
that the maximum lattice kissing number grows exponentially in
the dimension.



Open problems for kissing numbers

I Show that the only 24-point kissing configuration in 4
dimensions is that of D4.

I Improve asymptotic lower bounds on kissing numbers. The
best bound currently is the Shannon-Wyner bound which
grows like 20.2075n in the dimension.

I Improve asymptotic upper bounds on kissing numbers. The
best bound at the moment is Kabatiansky-Levenshtein’s
bound which grows like 20.401n.

Note that there was a recent breakthrough by Vladut, showing
that the maximum lattice kissing number grows exponentially in
the dimension.



Open problems for kissing numbers

I Show that the only 24-point kissing configuration in 4
dimensions is that of D4.

I Improve asymptotic lower bounds on kissing numbers. The
best bound currently is the Shannon-Wyner bound which
grows like 20.2075n in the dimension.

I Improve asymptotic upper bounds on kissing numbers. The
best bound at the moment is Kabatiansky-Levenshtein’s
bound which grows like 20.401n.

Note that there was a recent breakthrough by Vladut, showing
that the maximum lattice kissing number grows exponentially in
the dimension.



Open problems for kissing numbers

I Show that the only 24-point kissing configuration in 4
dimensions is that of D4.

I Improve asymptotic lower bounds on kissing numbers. The
best bound currently is the Shannon-Wyner bound which
grows like 20.2075n in the dimension.

I Improve asymptotic upper bounds on kissing numbers. The
best bound at the moment is Kabatiansky-Levenshtein’s
bound which grows like 20.401n.

Note that there was a recent breakthrough by Vladut, showing
that the maximum lattice kissing number grows exponentially in
the dimension.



Open problems for kissing numbers

I Show that the only 24-point kissing configuration in 4
dimensions is that of D4.

I Improve asymptotic lower bounds on kissing numbers. The
best bound currently is the Shannon-Wyner bound which
grows like 20.2075n in the dimension.

I Improve asymptotic upper bounds on kissing numbers. The
best bound at the moment is Kabatiansky-Levenshtein’s
bound which grows like 20.401n.

Note that there was a recent breakthrough by Vladut, showing
that the maximum lattice kissing number grows exponentially in
the dimension.



Spherical codes

Alternative formulation of kissing problem: maximum number of
points on a unit sphere which are separated by angles at least π/3.

Can replace this by any angle θ: it becomes the spherical coding
problem.

Exact answers are known for very few values of (dimension, angle).

They are usually sharp for the linear programming bound and also
spherical designs (Delsarte-Goethals-Seidel, Levenshtein).
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The new results in sphere packing

Theorem (Viazovska)

The E8 lattice packing is the densest sphere packing in R8.

Theorem (Cohn-Kumar-Miller-Radchenko-Viazovska)

The Leech lattice packing is the densest sphere packing in R24.

The proof is fairly direct, using just two main ingredients:

1. linear programming bounds for packing

2. the theory of modular forms
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Linear programming bounds for sphere packing

Let the Fourier transform of a function f be defined by

f̂ (t) =

∫
Rn

f (x)e2πi〈x ,t〉dx .

Theorem (Cohn-Elkies)

Suppose f : Rn → R is a Schwartz function with the properties

1. f (0) = f̂ (0) = 1.

2. f (x) ≤ 0 for |x | ≥ r (for some number r > 0).

3. f̂ (t) ≥ 0 for all t.

Then the density of any sphere packing in Rn is bounded above by

vol(Bn)(r/2)n.
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LP bounds

Why is it a linear programming bound?

We can rephrase the theorem (by scaling f appropriately) to say: if

1. f̂ (0) = 1

2. f (x) ≤ 0 for |x | ≥ 1

3. f̂ (t) ≥ 0 for all t

then the density is bounded by 2−nvol(Bn)f (0).

Note that the constraints and objective function given are linear in
f . Therefore this is a linear (convex) program.
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LP bounds with dimension

Here is a plot of log(density) vs. dimension.
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Conjecture (Cohn-Elkies)

There exist “magic” functions f8 and f24 whose corresponding
upper bounds match the densities of E8 and Λ24.
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Desired functions
Let Λ be E8 or the Leech lattice, and r0, r1, . . . its nonzero vector
lengths (square roots of the even natural numbers, except Leech
skips 2). To have a tight upper bound that matches Λ, we need
the function f to look like this:

r
0

r
1

r
2

x

f(x)

0



Desired functions

While f̂ must look like this:

r
0

r
1

r
2x

f(x)

0



Impasse

In [Cohn-Kumar] we used a polynomial of degree 803 and 3000
digits of precision to find f and f̂ which looked like this with 200
forced double roots, and r very close to 2.

Obtained an upper bound of Leech lattice density times 1 + 10−30.
Similar bounds for E8. Further numerical experimentation by Cohn
and Miller.

But how do we write down exact functions??

We were stuck for more than a decade.
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Viazovska’s breakthrough

In March 2016 Maryna Viazovska posted a preprint to the arxiv,
solving the sphere packing problem in 8 dimensions.

She found the magic function f8!

Her proof used modular forms.

Shortly afterward Cohn-Kumar-Miller-Radchenko-Viazovska were
able to adapt her ideas to find the magic function f24, solving the
24-dimensional sphere packing problem.
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Modular group

A modular form is a function φ : H → C with a lot of symmetries.

Specifically, let SL2(Z) denote all the integer two by two matrices
of determinant 1.

Image from the blog neverendingbooks.org, originally from John Stillwell’s article “Modular miracles” in Amer.

Math. Monthly.
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Fundamental domain

The picture shows Dedekind’s famous tesselation of the upper half
plane. The union of a black and a white region makes a
fundamental domain for the action of SL2(Z).

The quotient SL2(Z)\H can be identified with the Riemann sphere
CP1 minus a point.

The preimages of this point are ∞ and the rational numbers; these
are the cusps.

We say Γ is a congruence subgroup if it contains all the elements
of SL2(Z) congruent to the identity modulo N, for some natural
number N. Again the quotient is a complex algebraic curve; we
can compactify it by adding finitely many cusps.
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can compactify it by adding finitely many cusps.



Modular forms

The first condition for a holomorphic function f : H → C to be a
modular form for Γ of weight k is

f

(
az + b

cz + d

)
= (cz + d)k f (z)

for all matrices

g =

(
a b
c d

)
∈ Γ.

(That is, these are the infinitely many “symmetries” of f .)

The second condition is a growth condition as we approach a cusp,
which we won’t describe in detail here.
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Examples

How do we find actual examples of modular forms?

One way is to take simple examples of a “well-behaved”
holomorphic function and symmetrize (recalling that SL2(Z) acts
on Z2):

Gk(z) =
∑

(a,b)∈Z2\(0,0)

1

(az + b)k
.

For even k ≥ 4, the sum converges absolutely and we get a
non-zero modular form of weight k. These are called Eisenstein
series.
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Examples II

Another way is by taking theta functions of integral lattices.

If Λ is a lattice whose inner products 〈x , y〉 are all integers, then

ΘΛ(z) =
∑
v∈Λ

exp(πiz |v |2)

is a modular form for a congruence subgroup of SL2(Z).

Fact

The space of modular forms of a given weight for a given
congruence subgroup is finite dimensonal.
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Sketch of proof

The magic function is constructed using Laplace transforms of
suitable modular forms: f8 = f8,+ + f8,−, where

f8,ε = sin2(πr2/2)

∫ ∞
0

φε(it)e−πr
2t dt

for ε ∈ {±1}, where φε is a modular form chosen for a suitable
congruence subgroup and suitable weight such that

I The integral has a simple pole at r2 = 2. (Note that
sin2(πr2/2) has double zeros at r2 = 2, 4, 6, 8, . . . , so this
makes f have the correct “shape”.)

I The symmetry properties of φε imply that f̂8,ε = ε f8,ε, i.e., it
is an eigenfunction for the Fourier transform.

One still has to show there are no extra sign changes, which can be
accomplished by a computer check of appropriate properties of φ.
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Future work

There is a broad generalization of sphere packings - the problem of
potential energy minimization. Cohn and I conjectured that E8 and
the Leech lattices and the hexagonal lattice A2 are optimal for a
wide range of potentials (and proved analogous statements for
many optimal spherical codes).

Critical ingredient is LP bounds for energy (due to Yudin for
sphere, Cohn-K for Euclidean space).

We (the same team of five) have proved this universal optimality
for E8 and Λ24 and are in the process of writing it up. For A2 it
remains open!

We also have a project to analyze whether these modular-form
techniques will lead to asymptotic improvements in upper bounds
for sphere packing density.
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